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Abstract

In this paper, a homogenization-based method for predicting the viscoelastic properties of layered materials is

presented, and the explicit formulae for predicting the viscoelastic relaxation modulus of layered materials are obtained.

The derivation process includes two steps. First, the Laplace transform is applied to the governing equation of the

viscoelastic problem of layered materials, and the Laplace-transformed effective relaxation modulus of layered materials

is derived analytically based on the homogenization theory. Second, the effective relaxation modulus in the time domain

is obtained using the inverse Laplace transformation. A numerical example is presented at the end of the paper.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Generally speaking, most natural and artificial materials are heterogeneous in a microscopic scale. A

typical kind of heterogeneous material is composite material, which may be defined as a man-made material

with dissimilar constituents which occupy different regions with distinct interfaces between them (Kala-

mkarov, 1992). Owing to the wide application of composite materials in high performance structures, the

property analysis of heterogeneous materials becomes more and more important. Unfortunately, it is ex-

tremely difficult to determine the responses of the structures consisting of such materials with a large

number of heterogeneities. One way to overcome this difficulty is to replace the heterogeneous composite

material with an equivalent homogeneous material, which can represent both the composite material�s
effective properties and the influence features of their heterogeneity in microscopic scale. Although it is, in

principle, possible to determine the equivalent material properties experimentally, it is, in practice, very

costly and unrealistic to carry out such experiments for all possible microstructures.
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Homogenization theory, a mathematical theory originating from the study of partial differential equa-

tions with rapidly varying coefficients, is an alternative approach to determine the effective properties of

composite materials (Bensoussan et al., 1978; Sanchez-Palencia, 1980). The homogenization method as-

sumes that all quantities vary in two scales, i.e., a local scale and a global scale. Due to the periodicity of the
microstructure, quantities, such as displacement, strain, and stress, are assumed to be periodic with respect

to the local scale. In order to find the effective material properties of a medium, the asymptotic behavior of

the medium as the period goes to zero is investigated. Mathematically, homogenization theory is a limit

theory which uses the asymptotic expansions and the assumption of periodicity to substitute the differential

equations with rapidly oscillating coefficients with differential equations whose coefficients are constant or

slowly varying in such a way that the solutions are close to the initial equations (Oleinik, 1984). At this

point, it should be noted that the homogenization method has a rigorous mathematical background. Be-

sides, it is readily implemented with finite element method and thus especially useful for microstructures
with complex and irregular configurations (Guedes and Kikuchi, 1990). Owing to these attractive features,

the homogenization method was widely used in the past few years in prediction of elastic constants,

thermoelastic properties and thermal conductivity, and in topology optimization of structures, among

others, referred to in the survey papers by Hassani and Hinton (1998a,b).

There have been some publications (e.g., Yi et al., 1998; Nguyen et al., 1995) on the applications of

homogenization theory to viscoelastic problems, although the number is small compared with that in the

elastic cases. Yi et al. (1998) presented a systematic way of obtaining the effective viscoelastic modulus in

the time domain. This method requires implementing a numerical inverse Laplace transformation, which is
not always easy. In this paper, the viscoelastic properties of layered materials are investigated. For layered

materials, the elastic homogenization problem can be solved by an analytical method (Hassani and Hinton,

1998a,b), and the viscoelastic homogenization problem in transformed space is similar to the elastic one.

Based on these observations, the explicit formulae for predicting the effective viscoelastic relaxation

modulus of layered materials are derived by using homogenization theory in transformed space and inverse

Laplace transformation.
2. Viscoelastic problem and Laplace transformation of layered materials

The composite material investigated herein has a periodic layered microstructure as shown in Fig. 1.

Each layer consists of a homogeneous material. Based on the homogenization theory (Bensoussan et al.,

1978; Sanchez-Palencia, 1980; Yi et al., 1998), the viscoelastic problem of layered materials can be for-

mulated in a macroscopic or global coordinate system x ¼ ðx1; x2; x3ÞT and a microscopic or local coor-
dinate system y ¼ x3=e. Where, e is a small positive parameter which is the ratio of the microscopic and
macroscopic dimensions. Material properties depend on the microscopic variable, while variables such as
Fig. 1. Periodic microstructure and unit cell of layered material body.
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displacements and strain/stress fields depend on both the microscopic and macroscopic variables. All these

quantities mentioned above are the functions of two coordinate systems: geðxÞ ¼ gðx; yÞ. Owing to the
periodic character of the microstructure, the dependency of a function on y is Y -periodic and the function
can be expressed as:
geðxÞ ¼ gðx; yÞ ¼ gðx; y þ YÞ ð1Þ
It should be noted that the periodic feature is only exhibited in the normal direction of the layers. In this

case, the derivatives of a general function with respect to coordinates xi ði ¼ 1; 2; 3Þ should be formulated as
ogeðxÞ
oxi

¼
ogðx;yÞ
oxi

; i ¼ 1; 2
ogðx;yÞ
oxi

þ 1
e
ogðx;yÞ

oy ; i ¼ 3

(
ð2Þ
Let X, an open connected domain of R3, be the domain occupied by the layered material, oX1 and oX2 be its

outer boundaries with specific surface traction and specific displacements respectively, see Fig. 1. The unit
cell is expressed by Y ¼ ½0; h� which is a one-dimensional region in the layers� normal direction.
Define strain operators exð�Þ and eyð�Þ as follows
exð�Þ ¼

o
ox1

0 0 0 o
ox3

o
ox2

0 o
ox2

0 o
ox3

0 o
ox1

0 0 o
ox3

o
ox2

o
ox1

0

264
375
T

ð3aÞ

eyð�Þ ¼
0 0 0 0 o

oy 0

0 0 0 o
oy 0 0

0 0 o
oy 0 0 0

264
375
T

ð3bÞ
Then, the constitutive equation of viscoelastic problems can be written as (Christensen, 1982)
freðx; tÞg ¼
Z t

0

Gðx; t 
 sÞ o
ot
ðexðueðx; sÞÞÞds ð4Þ
where t denotes the time, G is the relaxation modulus matrix, and freðx; tÞg and ueðx; tÞ are stress and
displacement vectors respectively.

Based on the virtual work principle, the viscoelastic governing equation can be constructed as:

Find ueðx; tÞ 2 Ve, such that
Z
X

eTx ðduðxÞÞreðx; tÞdx

Z

X
duTf dx


Z
oX1

duTpdx ¼ 0; 8du 2 Ve ð5Þ
where, f and p are body forces and surface traction, respectively. The set Ve including the kinetic admissible

displacements is defined by
Ve ¼ fuðx; tÞjt¼t0
2 ðH 1ðXÞÞ3and ujoX2

¼ 0g ð6Þ
and H 1ðXÞ is the Sobolev space.
Applying Laplace transformation to Eq. (5) yields
Z

X
eTx ðduðxÞÞseGðx; sÞexð~ueðx; sÞÞdx


Z
X

duT~f dx

Z
oX1

duT~pdx ¼ 0; 8du 2 Ve ð7Þ
where variables with the mark ‘‘�’’ show that they are Laplace transformed, and s is the transformed
parameter. For example, if f ðtÞ is a general function, ~f ðsÞ denotes its Laplace transformation
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~f ðsÞ ¼
Z 1

0

f ðtÞe
st dt ð8Þ
Following the homogenization procedure (Bensoussan et al., 1978), we expand the displacement ueðx; tÞ
into an asymptotic series in the following form
ueðx; tÞ ¼ u0ðx; tÞ þ eu1ðx; y; tÞ þ e2u2ðx; y; tÞ þ � � � ð9Þ

where u0ðx; tÞ is effective or overall displacement, only depending on the macroscopic coordinates x

(Kalamkarov, 1992). Substituting the Laplace transformation of Eq. (9) into (7), and equating the terms

with the same power of e, the following expressions can be obtained
Z
X
seTy ðduÞeG½exð~u0Þ þ eyð~u1Þ�dx ¼ 0; 8du 2 VX�Y ð10Þ

Z
X
½eTy ðduÞeGðexð~u1Þ þ eyð~u2ÞÞ þ eTx ðduÞCðexð~u0Þ þ eyð~u1ÞÞ�dx



Z
A
ðduÞT~f dx


Z
oX1

ðduÞT~pdx ¼ 0; 8du 2 VX�Y ð11Þ
where
VX�Y ¼ fuðx; yÞ; ðx; yÞ 2 X � Y juðx; yÞ ¼ uðx; y þ Y Þ; u smooth enough and ujoX2 ¼ 0g ð12Þ
Similarly, we define VX and VY as
VX ¼ fuðxÞ; x 2 X juðxÞ 2 H 1ðXÞ and uðxÞjoX2
¼ 0g ð13Þ

VY ¼ fuðyÞ; y 2 Y juðyÞ 2 H 1ðXÞ; uðyÞ ¼ uðy þ Y Þg ð14Þ

For a Y-periodic function, we have (Bensoussan et al., 1978; Sanchez-Palencia, 1980)
lim
e!0þ

Z
X
geðxÞdx ¼

Z
X

1

jY j

Z
Y
gðx; yÞdy


 �
dx ð15Þ
Considering the above equation, we know that when e ! 0þ, Eqs. (10) and (11) become
Z
X

1

jY j

Z
Y
seTy ðduÞeGðexð~u0Þ



þ eyð~u1ÞÞdy

�
dx ¼ 0; 8du 2 VX�Y ð16Þ

Z
X

1

jY j

Z
Y
½eTy ðduÞeGðexð~u1Þ



þ eyð~u2ÞÞ þ eTx ðduÞCðexð~u0Þ þ eyð~u1ÞÞ�dy

�
dx



Z

X

1

jY j

Z
Y
ðduÞT~f dy


 �
dx


Z
oX1

ðduÞT~pdx ¼ 0; 8du 2 VX�Y ð17Þ
As du is an arbitrary function we choose du ¼ duðyÞ. Eq. (16) becomes
Z
Y

eTy ðduÞeGðexð~u0Þ þ eyð~u1ÞÞdy ¼ 0; 8du 2 VY ð18Þ
Although this equation does not have a unique solution, its solution can be determined up to an additive

constant (Sanchez-Palencia, 1980). As this equation is linear with respect to ~u0, its solution ~u1 can be ex-
pressed in terms of ~u0 as:
~u1ðx; y; sÞ ¼ 
Uðy; sÞexð~u0ðx; sÞÞ þ WðxÞ ð19Þ
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where WðxÞ is arbitrary constant of integration in y. Uðy; sÞ has the form
Uðy; sÞ ¼ ½U1ðy; sÞ;U2ðy; sÞ; . . . ;U6ðy; sÞ�; Ujðy; sÞ ¼ ðUj
1;U

j
2;U

j
3Þ
T
; j ¼ 1; 2; . . . ; 6 ð20Þ
and is the periodic solution of the following microscopic homogenization problem
s
Z
Y

eTy ðduðyÞÞ½eGj 
 eGeyðUjðy; sÞÞ�dy ¼ 0; 8du 2 VY ; j ¼ 1; 2; . . . ; 6 ð21Þ
In the above equation, eGj is the jth column vector of the Laplace transformation of the relaxation modulus
matrix.
eGj ¼ ðG1j;G2j; . . . ;G6jÞT ð22Þ
Substituting Eq. (19) into Eq. (17) and choosing du ¼ duðxÞ yields
Z
X
seTx ðduÞeGH exð~u0Þdx


Z
Z

duT~fH dx

Z
oX1

duT~pdC ¼ 0; 8du 2 VX ð23Þ
where ~fH ¼ 1
jY j
R
Y
~f dy and
eGH ðsÞ ¼ 1

jYj

Z
Y
½eG 
 eGeyðUðy; sÞÞ�dy ð24Þ

eyðUðy; sÞÞ ¼ ½eyðU1ðy; sÞÞ; eyðU2ðy; sÞÞ; . . . ; eyðU6ðy; sÞÞ� ð25Þ
Eq. (23) is very similar to the governing Eq. (7) of virtual work principle. eGH is the effective relaxation
modulus matrix in the Laplace transformed domain. After obtaining ~GH from Eq. (24), the effective

relaxation modulus GH of the layered material in the time domain can be determined by the inverse Laplace

transformation.

Eq. (21) is called a microscopic homogenization problem. In general cases, it is solved by a numerical

method, such as the finite element method. For layered material investigated in this paper, it will be solved

analytically.
3. Solution of microscopic homogenization problem

Assume that the material of every layer is orthotropic and the plane parallel to the layer is a material

symmetric plane. In this case, the relaxation modulus of every layer has the following form:
G ¼

G11 G12 G13 0 0 0

G12 G22 G23 0 0 0

G13 G23 G33 0 0 0

0 0 0 G44 0 0

0 0 0 0 G55 0

0 0 0 0 0 G66

26666664

37777775 ð26Þ
Substituting Eq. (26) into Eq. (21) and considering the fact that Eq. (21) is defined in one-dimensional

region, we have
Z
Y
ðeTy ðduÞðeGj 
 eGeyðUjÞÞdy ¼ 0 ð27Þ
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Introducing Eq. (3b) into Eq. (27) and expanding this equation yields
Z
Y

eG3j




 eG33

oU3j

oy

�
odu3
oy

dy ¼ 0; j ¼ 1; 2; . . . ; 6 ð28aÞ

Z
Y

eG4j




 eG44

oU2j

oy

�
odu2
oy

dy ¼ 0; j ¼ 1; 2; . . . ; 6 ð28bÞ

Z
Y

eG5j




 eG55

oU1j

oy

�
odu1
oy

dy ¼ 0; j ¼ 1; 2; . . . ; 6 ð28cÞ
Integrating Eq. (28) by parts yields

 oU3j

oy
¼ C3jeG33



eG3jeG33

; j ¼ 1; 2; . . . ; 6 ð29aÞ


 oU1j

oy
¼ C1j 
 eG5jeG55

; j ¼ 1; 2; . . . ; 6 ð29bÞ


 oU2j

oy
¼ C2j 
 eG4jeG44

; j ¼ 1; 2; . . . ; 6 ð29cÞ
where C1j, C2j and C3j ðj ¼ 1; 2; . . . ; 6Þ are real constants.
The periodicity condition requires that the following equations should be satisfied
1

jY j

Z
Y

oU3j

oy
dy ¼ 0; j ¼ 1; 2; . . . ; 6 ð30aÞ

1

jY j

Z
Y

oU1j

oy
dy ¼ 0; j ¼ 1; 2; . . . ; 6 ð30bÞ

1

jY j

Z
Y

oU2j

oy
dy ¼ 0; j ¼ 1; 2; . . . ; 6 ð30cÞ
From the above equations, the non-zero components of the real constants C1j, C2j and C3j ðj ¼ 1; 2; . . . ; 6Þ
can be obtained by
C15 ¼
1

Mð1=eG55Þ
; C24 ¼

1

Mð1=eG44Þ
; C3j ¼

MðeG3j=eG33Þ
Mð1=eG33Þ

; j ¼ 1; 2; 3 ð31Þ
Substituting Eqs. (29) and (31) into Eq. (24), the Laplace transformed effective relaxation moduli can be

expressed explicitly as
eGH
33 ¼ 1=Mð1=eG33Þ ð32aÞ

eGH
11 ¼ MðeG11Þ 
MðeG2

13=
eG33Þ þ eGH

33M
2ðeG13=eG33Þ ð32bÞ

eGH
22 ¼ MðeG22Þ 
MðeG2

23=
eG33Þ þ eGH

33M
2ðeG23=eG33Þ ð32cÞ

eGH
12 ¼ MðeG12Þ 
MðeG23

eG13=eG33Þ þ eGH
33MðeG13=eG33ÞMðeG32=eG33Þ ð32dÞ
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eGH
13 ¼ eGH

33MðeG31=eG33Þ ð32eÞ

eGH
23 ¼ eGH

33MðeG23=eG33Þ ð32fÞ

eGH
44 ¼ 1=Mð1=eG44Þ ð32gÞ

eGH
55 ¼ 1=Mð1=eG55Þ ð32hÞ

~GH
66 ¼ MðeG66Þ ð32iÞ
where the volume average operator is defined as
Mð�Þ ¼ 1

jY j

Z
Y
ð�Þdy ¼ 1

h

Z h

0

ð�Þdy ð33Þ
4. Inverse Laplace transformation of relaxation modulus

In this section, two typical kinds of viscoelastic constitutive models will be considered in order to

illustrate the procedure of the method.

4.1. Model I

Assume that the viscoelastic properties of every layer satisfy the following three-parameter model
GijðtÞ ¼ EðtÞGij ¼ ðq0 þ qe
ptÞGij ð34Þ
where Gij, q0, q and p are constant parameters. The material constants of two different layers are expressed
as
EðtÞ ¼ EIðtÞ ¼ qI0 þ qIe
pI ; Gij ¼ G
I

ij ð35aÞ

EðtÞ ¼ EIIðtÞ ¼ qII0 þ qIIe
pIIt; Gij ¼ G
II

ij ð35bÞ
In the above equations and the next sections, the superscripts I and II denote different layers I and II. The

Laplace transformed relaxation modulus of two different layers are expressed as
eGI
ijðsÞ ¼ eEIðsÞGI

ij ¼
qI0
s



þ qI

sþ pI

�
G
I

ij ¼
ðqI0 þ qIÞsþ pIqI0

sðsþ pIÞ G
I

ij ð36aÞ

eGII
ij ðsÞ ¼ eEIIðsÞGII

ij ¼
qII0
s



þ qII

sþ pII

�
G
II

ij ¼
ðqII0 þ qIIÞsþ pIIqII0

sðsþ pIIÞ G
II

ij ð36bÞ
Introducing eGI
ijðsÞ and eGII

ij ðsÞ into Eq. (32) and doing inverse transformation, we have
GH
33 ¼ Revð1=Mð1=eG33ÞÞ ð37aÞ

GH
11 ¼ MðG11Þ 
MðEG2

13=G33Þ þ GH
33M

2ðG13=G33Þ ð37bÞ

GH
22 ¼ MðG22Þ 
MðEG2

23=G33Þ þ GH
33M

2ðG23=G33Þ ð37cÞ
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GH
12 ¼ MðG12Þ 
MðEG23G13=G33Þ þMðG13=G33ÞMðG32=G33ÞGH

33 ð37dÞ

GH
13 ¼ MðG31=G33ÞGH

33 ð37eÞ

GH
23 ¼ MðG23=G33ÞGH

33 ð37fÞ

GH
44 ¼ Revð1=Mð1=eG44ÞÞ ð37gÞ

GH
55 ¼ Revð1=Mð1=eG55ÞÞ ð37hÞ

GH
66 ¼ MðG66Þ ð37iÞ
where Rev( ) denotes inverse Laplace transformation. In the above equations, all the elements of the

relaxation modulus except GH
33, G

H
44 and GH

55 are given explicitly in terms of the properties of the layers. Next,
we shall determine them by the inverse Lalace transformation of ð1=Mð1=eGiiÞ, i ¼ 3; 4; 5.
In this paper, we will use the Cauchy residue theorem based method to determine the inverse Laplace

transformation. The inverse transform of a general function ~f ðsÞ is defined by the complex integral formula
(Debnath, 1995)
f ðtÞ ¼ Revð~f ðsÞÞ ¼ 1

2pi

Z cþi1

c
i1
~f ðsÞest ds ð38Þ
where c is a suitable real constant and ~f ðsÞ is an analytic function of the complex variable s in the right half-
plane Re s > c. Suppose that ~f ðsÞ is a single valued function with a finite or enumerably infinite number of
polar singularities and that all the singularities lie in the left half-plane Re s6 c. Then, Cauchy residue
theorem (Debnath, 1995) yields
f ðtÞ ¼ Revð~f ðsÞÞ ¼ sum of the residues of ~f ðsÞ est at the poles of ~f ðsÞ ð39Þ
Considering the definition of the volume average operator Mð�Þ given by Eq. (33), 1=Mð1=eGiiÞ, ði ¼ 3; 4; 5Þ,
can be expressed as
1=Mð1=eGiiÞ ¼
1

V I=eGI
ii þ V II=eGII

ii

¼ PiiðsÞ
sðs
 sii1Þðs
 sii2Þ

; i ¼ 3; 4; 5 ð40Þ
where V I and V II are the volume fractions of MAT-I layer and MAT-II layer, respectively, PiiðsÞ is a
polynomial of state variable s and is defined by the following equations
PiiðsÞ ¼ G
I

iiG
II

ii ðAIsþ pIqI0ÞðAIIsþ pIIqII0 Þ ð41Þ

AI ¼ qI0 þ qI; AII ¼ qII0 þ qII ð42Þ
and sii1 and sii2 are the poles of 1=Mð1=eGiiÞ.
sii1 ¼

bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 
 4ac

p

2a
; sii2 ¼


b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 
 4ac

p

2a
ð43Þ

a ¼ AIV IIG
I

ii þ AIIV IG
II

ii

b ¼ ðpIIqII0 þ pIAIIÞV IG
II

ii þ ðpIqI0 þ pIIAIÞV IIG
I

ii

c ¼ pIpIIðqII0 V IG
II

ii þ qI0V
IIG

I

iiÞ

ð44Þ



S.T. Liu et al. / International Journal of Solids and Structures 41 (2004) 3675–3688 3683
According to Eq. (39), inverse Laplace transformation of (40) is expressed as
Rev
1

Mð1=eGiiÞ

 !
¼ Res

s¼0

PiiðsÞ
sðs
 sii1Þðs
 sii2Þ

est

 �

þRes
s¼sii

1

PiiðsÞ
sðs
 sii1Þðs
 sii2Þ

est

 �

þRes
s¼sii

2

PiiðsÞ
sðs
 sii1Þðs
 sii2Þ

est

 �

ð45Þ
where, Ress¼s1ðf ðsÞÞ denotes the residue of f ðsÞ in s1. Thus, the relaxation modulus GH
ii can be expressed in

the following analytical formula
GH
ii ¼ G

I

iiG
II

ii

pIqI0p
IIqII0

s1s2

�
þ ðAIs1 þ pIqI0ÞðAIIs1 þ pIIqII0 Þ

s1ðs1 
 s2Þ
es1t þ ðAIs2 þ pIqI0ÞðAIIs2 þ pIIqII0 Þ

ðs2 
 s1Þs2
es2t
�

i ¼ 3; 4; 5 ð46Þ
From Eq. (37) and Eq. (46), the relaxation muduli can be computed analytically.

4.2. Model II

In the second model, every individual layer is assumed to be isotropic and its bulk deformation elastic,

and the shear deformation satisfies the three-parameter solid model. The constitutive equation of the layers

is expressed as
frg ¼
Z t

0

Gðt 
 nÞ ofeðnÞg
on

dn ð47Þ
Non-zero elements of the relaxation modulus matrix are
G11 ¼ G22 ¼ G33 ¼ K þ 2

3
Y ; G44 ¼ G55 ¼ G66 ¼ Y ; G12 ¼ G13 ¼ G23 ¼ K 
 1

3
Y ð48Þ
where K is the bulk elastic modulus and is not related to time, Y ðtÞ is the shear relaxation modulus and is
expressed as
Y ðtÞ ¼ q0 þ qe
pt; q0 ¼ 2G1 

G2
1

G1 þ G2

; q ¼ G2
1

G1 þ G2

; p ¼ G2

g2
ð49Þ
where G1 and G2 are shear rigidity moduli, and g2 is viscous coefficient. In this case, the Laplace trans-
formation of the effective relaxation modulus can be determined by Eq. (32). Considering the isotropic

feature of the layers, and applying the inverse Laplace transformation to Eq. (32), the macroscopic effective

relaxation modulus is expressed as
GH
33 ¼ Revð1=Mð1=eG33ÞÞ ð50aÞ

GH
11 ¼ GH

22 ¼ MðG11Þ 
MðRevðeG2
13=ðeG2

13=
eG33ÞÞÞ þRev

MðeG13=eG33ÞMðeG23=eG33Þ
Mð1=eG33Þ

 !
ð50bÞ

GH
12 ¼ MðG12Þ 
MðRevðeG2

13=
eG33ÞÞ þRev

MðeG13=eG33ÞMðeG23=eG33Þ
Mð1=eG33Þ

 !
ð50cÞ

GH
13 ¼ GH

23 ¼ Rev
MðeG13=eG33Þ
Mð1=eG33Þ

 !
ð50dÞ
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GH
44 ¼ GH

55 ¼ Revð1=Mð1=eG44ÞÞ ð50eÞ

eGH
66 ¼ MðeG66Þ ð50fÞ
The inverse Laplace transformations listed in the above equations will be determined in the following

sections.

4.2.1. GH
33 and GH

44

Firstly, we will derive the formulae to determine GH
33 and GH

44. Using the method for deriving Eq. (40), we

can obtain
1=Mð1=eG33Þ ¼
1

V I=eGI
33 þ V II=eGII

33

¼ P 33ðsÞ
3a33sðs
 s331 Þðs
 s332 Þ

ð51Þ

1=Mð1=eG44Þ ¼
1

V I=eGI
44 þ V II=eGII

44

¼ P 44ðsÞ
3a44sðs
 s441 Þðs
 s442 Þ

ð52Þ
where
a33 ¼ V Ið3KII þ 2qII0 þ 2qIIÞ þ V IIð3KI þ 2qI0 þ 2qIÞ ð53aÞ

P 33ðsÞ ¼ bð3KI þ 2qI0Þðsþ pIÞ þ 2qIsc � bð3KII þ 2qII0 Þðsþ pIIÞ þ 2qIIsc ð53bÞ

a44 ¼ V IðqII þ qII0 Þ þ V IIðqI þ qI0Þ ð54aÞ

P 44ðsÞ ¼ bðqI þ qI0Þsþ qI0p
IcbðqII þ qII0 Þsþ qII0 p

IIc ð54bÞ
where s331 and s332 are the roots of the equation below
V Iðsþ pIÞbsð3KII þ 2qII0 þ 2qIIÞ þ ð3KII þ 2qII0 ÞpIIc

þ V IIðsþ pIIÞ½sð3KI þ 2qI0 þ 2qIÞ þ ð3KI þ 2qI0ÞpI� ¼ 0 ð55Þ
and s441 and s442 are the roots of the below equation
V Iðsþ pIÞbðqII þ qII0 Þsþ qII0 p
IIc þ V IIðsþ pIIÞbðqI þ qI0Þsþ qI0p

Ic ¼ 0 ð56Þ
Using the method expressed by Eq. (39), it will be derived that
GH
33 ¼

P 33ð0Þ
3a33s331 s

33
2

þ P 33ðs331 Þ
3a33s331 ðs331 
 s332 Þ

es
33
1
1t þ P 33ðs332 Þ

3a33ðs332 
 s331 Þs332
es

33
2
t ð57Þ

GH
44 ¼

P 44ð0Þ
a44s441 s

44
2

þ P 44ðs441 Þ
a44s441 ðs441 
 s442 Þ

es
44
1
1t þ P 44ðs442 Þ

a44ðs442 
 s441 Þs442
es

44
2
t ð58Þ
4.2.2. Inverse Laplace transformation of eG2
13=
eG33

From Eqs. (48) and (49), we have
eG2
13=
eG33 ¼

ðð3K 
 q0Þðsþ pÞ 
 qsÞ2

3ð3K þ 2q0 þ 2qÞ sþ ð3Kþ2q0Þp
3Kþ2q0þ2q

� � � 1

ðsþ pÞs ð59Þ
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By use of Eq. (39), we have
Table

Materi

Mat

Mat
RevðeG2
13=
eG33Þ ¼

ðð3K 
 q0Þðs1 þ pÞ 
 qs1Þ2

3ð3K þ 2q0 þ 2qÞ � 1

ðs1 þ pÞs1
es1t þ ð3K 
 q0Þ2

3ð3K þ 2q0Þ


 q2p
3ð3K þ 2q0 þ 2qÞðs1 
 pÞ e


pt ð60Þ
where
s1 ¼ 
 ð3K þ 2q0Þp
3K þ 2q0 þ 2q

ð61Þ
4.2.3. Inverse Laplace transformation of M(eG13=eG33)=M(1=eG33)

Defining
Q13ðsÞ ¼ V Ibð3KI 
 qI0 
 qIÞsþ ð3KI 
 qI0ÞpIcbð3KII þ 2qII0 þ 2qIIÞsþ ð3KII þ 2qII0 ÞpIIc
þ V II½ð3KII 
 qII0 
 qIIÞsþ ð3KII 
 qII0 ÞpII�½ð3KI þ 2qI0 þ 2qIÞsþ ð3KI þ 2qI0ÞpI� ð62Þ
then
MðeG13=eG33Þ ¼ Q13ðsÞ=P 33ðsÞ ð63Þ
and
MðeG13=eG33Þ
Mð1=eG33Þ

¼ Q13ðsÞ
P ssðsÞ

1

Mð1=eG33Þ
¼ Q13ðsÞ
3a33sðs
 s331 Þðs
 s332 Þ

ð64Þ
Based on Eq. (39), it is derived that
Rev
MðeG13=eG33Þ
Mð1=eG33Þ

 !
¼ Q13ð0Þ
3a33s331 s

33
2

þ Q13ðs331 Þ
3a33s331 ðs331 
 s332 Þ

ets
33
1 þ Q13ðs332 Þ

3a33s332 ðs332 
 s331 Þ
ets

33
2 ð65Þ
4.2.4. Inverse Laplace transformation of M(eG13=eG33)M(eG23=eG33)=M(1=eG33)

From Eq. (63), we have
MðeG13=eG33ÞMðeG23=eG33Þ
Mð1=eG33Þ

¼ ½Q13ðsÞ�2

3a33sðs
 s331 Þðs
 s332 ÞP ssðsÞ

¼ ½Q13ðsÞ�2

3a33sðs
 s331 Þðs
 s332 Þðs
 s333 Þðs
 s334 Þ
ð66Þ
where s333 and s334 are the zero point of P 33ðsÞ.
1

al constants of two different layers

E (MPa) t g (pad) K (MPa) q0 (MPa) q1 (MPa) p (1/day)

-I 9.8· 108 0.24 9.8· 1010 628.2 9.67· 108 3.22· 108 0.00658

-II 1.96· 108 0.2 9.8· 1010 108.9 6.1 · 107 1.84· 108 0.00125
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By using the residue theorem based method expressed by Eq. (39), the following formula is derived
Rev
MðeG13=eG33ÞMðeG23=eG33Þ

Mð1=eG33Þ

" #
¼ ½Q13ð0Þ�2

3a33s331 s
33
2 s

33
3 s

33
4

þ ½Q13ðs331 Þ�
2

3a33s331 ðs331 
 s332 Þðs331 
 s333 Þðs331 
 s334 Þ
es

33
1
t

þ ½Q13ðs332 Þ�
2

3a33s332 ðs332 
 s331 Þðs332 
 s333 Þðs332 
 s334 Þ
es

33
2
t

þ ½Q13ðs333 Þ�
2

3a33s333 ðs333 
 s331 Þðs333 
 s332 Þðs333 
 s334 Þ
es

33
3
t

þ ½Q13ðs334 Þ�
2

3a33s334 ðs334 
 s331 Þðs334 
 s332 Þðs334 
 s333 Þ
es

33
4
t ð67Þ
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Fig. 2. Effective relaxation modulus GH
11ðGH

22 ¼ GH
11Þ in time domain (the volume fraction of Mat-II is 10%).
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Fig. 3. Effective relaxation modulus GH
12 and GH

13 in time domain (the volume fraction of Mat-II is 10%).
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After obtaining these inverse Laplace transformations, we can get every element of the relaxation modulus

matrix of the layered material by substituting Eqs. (57), (58), (59), (61), (65) and (67) into Eq. (50).
5. Numerical example

Suppose that the microstructure of the layered material consists of two isotropic layers, and that the bulk

deformation of every individual layer is elastic and the shear deformation satisfies the three-parameter solid

model. The material constants of both layers are shown in Table 1. Based on the analytical expressions

derived in this paper, the relaxation moduli of the layered materials are computed. Figs. 2–4 show the

effective relaxation modulus in the time domain, when the volume fraction of MAT-II is 10%. Fig. 5 shows

the variations of the effective relaxation modulus with the volume fraction of the layers.
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Fig. 4. Effective relaxation modulus GH
33, G

H
44, G

H
66 in time domain (the volume fraction of Mat-II is 10%).
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Fig. 5. Effective relaxation modulus vs. volume fraction of Mat-II (at the time of one day).
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6. Conclusions

Based on the homogenization theory and Laplace transformation, analytical expressions for predicting

the viscoelastic property of layered materials have been derived. The expressions make it easy to determine
the overall viscoelastic property of layered materials and can be used in engineering design.
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