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Abstract

In this paper, a homogenization-based method for predicting the viscoelastic properties of layered materials is
presented, and the explicit formulae for predicting the viscoelastic relaxation modulus of layered materials are obtained.
The derivation process includes two steps. First, the Laplace transform is applied to the governing equation of the
viscoelastic problem of layered materials, and the Laplace-transformed effective relaxation modulus of layered materials
is derived analytically based on the homogenization theory. Second, the effective relaxation modulus in the time domain
is obtained using the inverse Laplace transformation. A numerical example is presented at the end of the paper.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Generally speaking, most natural and artificial materials are heterogeneous in a microscopic scale. A
typical kind of heterogeneous material is composite material, which may be defined as a man-made material
with dissimilar constituents which occupy different regions with distinct interfaces between them (Kala-
mkarov, 1992). Owing to the wide application of composite materials in high performance structures, the
property analysis of heterogeneous materials becomes more and more important. Unfortunately, it is ex-
tremely difficult to determine the responses of the structures consisting of such materials with a large
number of heterogeneities. One way to overcome this difficulty is to replace the heterogeneous composite
material with an equivalent homogeneous material, which can represent both the composite material’s
effective properties and the influence features of their heterogeneity in microscopic scale. Although it is, in
principle, possible to determine the equivalent material properties experimentally, it is, in practice, very
costly and unrealistic to carry out such experiments for all possible microstructures.
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Homogenization theory, a mathematical theory originating from the study of partial differential equa-
tions with rapidly varying coefficients, is an alternative approach to determine the effective properties of
composite materials (Bensoussan et al., 1978; Sanchez-Palencia, 1980). The homogenization method as-
sumes that all quantities vary in two scales, i.e., a local scale and a global scale. Due to the periodicity of the
microstructure, quantities, such as displacement, strain, and stress, are assumed to be periodic with respect
to the local scale. In order to find the effective material properties of a medium, the asymptotic behavior of
the medium as the period goes to zero is investigated. Mathematically, homogenization theory is a limit
theory which uses the asymptotic expansions and the assumption of periodicity to substitute the differential
equations with rapidly oscillating coefficients with differential equations whose coefficients are constant or
slowly varying in such a way that the solutions are close to the initial equations (Oleinik, 1984). At this
point, it should be noted that the homogenization method has a rigorous mathematical background. Be-
sides, it is readily implemented with finite element method and thus especially useful for microstructures
with complex and irregular configurations (Guedes and Kikuchi, 1990). Owing to these attractive features,
the homogenization method was widely used in the past few years in prediction of elastic constants,
thermoelastic properties and thermal conductivity, and in topology optimization of structures, among
others, referred to in the survey papers by Hassani and Hinton (1998a,b).

There have been some publications (e.g., Yi et al., 1998; Nguyen et al., 1995) on the applications of
homogenization theory to viscoelastic problems, although the number is small compared with that in the
elastic cases. Yi et al. (1998) presented a systematic way of obtaining the effective viscoelastic modulus in
the time domain. This method requires implementing a numerical inverse Laplace transformation, which is
not always easy. In this paper, the viscoelastic properties of layered materials are investigated. For layered
materials, the elastic homogenization problem can be solved by an analytical method (Hassani and Hinton,
1998a,b), and the viscoelastic homogenization problem in transformed space is similar to the elastic one.
Based on these observations, the explicit formulae for predicting the effective viscoelastic relaxation
modulus of layered materials are derived by using homogenization theory in transformed space and inverse
Laplace transformation.

2. Viscoelastic problem and Laplace transformation of layered materials

The composite material investigated herein has a periodic layered microstructure as shown in Fig. 1.
Each layer consists of a homogeneous material. Based on the homogenization theory (Bensoussan et al.,
1978; Sanchez-Palencia, 1980; Yi et al., 1998), the viscoelastic problem of layered materials can be for-
mulated in a macroscopic or global coordinate system x = (xl,xz,x3)T and a microscopic or local coor-
dinate system y = x3/e. Where, ¢ is a small positive parameter which is the ratio of the microscopic and
macroscopic dimensions. Material properties depend on the microscopic variable, while variables such as
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Fig. 1. Periodic microstructure and unit cell of layered material body.
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displacements and strain/stress fields depend on both the microscopic and macroscopic variables. All these
quantities mentioned above are the functions of two coordinate systems: g‘(x) = g(x,y). Owing to the
periodic character of the microstructure, the dependency of a function on y is Y-periodic and the function
can be expressed as:

g'(x) = g(x,») = g(x,y+Y) (1)

It should be noted that the periodic feature is only exhibited in the normal direction of the layers. In this
case, the derivatives of a general function with respect to coordinates x; (i = 1,2, 3) should be formulated as

ogr(x) [, i=12 2
ox; agé:y) % ag(@);y)7 i=3

Let Q, an open connected domain of R3, be the domain occupied by the layered material, 0Q; and 0, be its
outer boundaries with specific surface traction and specific displacements respectively, see Fig. 1. The unit
cell is expressed by Y = [0, 4] which is a one-dimensional region in the layers’ normal direction.

Define strain operators ¢.(e) and ¢,(e) as follows

T

= 0 0 0 &

s =[0 & 0 & 0 & (3a)
[0 0 & & w0
(00 0 0 2 0]"

e(e)=10 0 0 2 0 0 (3b)
002 0 00

Then, the constitutive equation of viscoelastic problems can be written as (Christensen, 1982)
t
(@0} = [ 6= 2w ) @
0

where ¢ denotes the time, G is the relaxation modulus matrix, and {¢*(x,¢)} and w’(x,¢) are stress and
displacement vectors respectively.

Based on the virtual work principle, the viscoelastic governing equation can be constructed as:

Find w'(x, ) € V*, such that

[ e oo [atte [ ampac=o, vuev )
e Q Koy

where, f and p are body forces and surface traction, respectively. The set V* including the kinetic admissible
displacements is defined by

Ve = {u(x,1)|_, € (H"(Q))and u,y, =0} (6)

|l‘:t0

and H'(Q) is the Sobolev space.
Applying Laplace transformation to Eq. (5) yields

[ oG x ) dx— [ surax - [ supax=0, vowe v "
Q Q

0,

>

where variables with the mark “~” show that they are Laplace transformed, and s is the transformed
parameter. For example, if f(¢) is a general function, f(s) denotes its Laplace transformation
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6= [ rnear ®)
Following the homogenization procedure (Bensoussan et al., 1978), we expand the displacement w’(x, ¢)
into an asymptotic series in the following form

u'(x,7) = u'(x,2) +eu' (X, y, 1) + W (X, y, 1) + - ©)

where u’(x,?) is effective or overall displacement, only depending on the macroscopic coordinates x
(Kalamkarov, 1992). Substituting the Laplace transformation of Eq. (9) into (7), and equating the terms
with the same power of ¢, the following expressions can be obtained

/ ser (3u) Gle, (8°) + &,(0')]dx =0, Vdu € Vouy (10)

/!2 (67 (80)G (e (8) + &, () + & (5u) Clex (@) + &, (@))] dx

- /(au)dex - / (3u)"pdx =0, Voue Vg,.y (11)
A 00
where
Vo.r = {u(x,y); (x,) € 2 x Y[u(x,y) = u(x,y + Y),u smooth enough and ul,, =0} (12)
Similarly, we define Vg and Vy as
Vo = {u(x);x € Q|u(x) € H'(2) and u(x)|sg, = 0} (13)
Vy ={u(y)iy € YJuy) € H'(Q),u(y) =u(y + ¥)} (14)
For a Y-periodic function, we have (Bensoussan et al., 1978; Sanchez-Palencia, 1980)
. 1
lim [ gf(x)dx = / { /g(x,y) dy}dx (15)
e=0" Jo o LIY]Jy
Considering the above equation, we know that when ¢ — 0%, Egs. (10) and (11) become
1 ~
/ {m /ssj(Su)G(sx(ﬁo) + sy(ﬁl))dy}dx =0, Youée Voy (16)
Q Yy

/ {ﬁ [ GG ) 0, 6)) + o GuC ) + ey<ﬁ1>>]dy}dx

-, {ﬁ /y<5“>ﬁdy}d" - [ Gwpax =0, voue Vo, (17)
1

As du is an arbitrary function we choose du = du(y). Eq. (16) becomes
/ el (3u)G (e, (") + &,(0"))dy = 0, Vou € Vy (18)
Y

Although this equation does not have a unique solution, its solution can be determined up to an additive
constant (Sanchez-Palencia, 1980). As this equation is linear with respect to @, its solution @' can be ex-
pressed in terms of @ as:

' (x,,5) = —P(y,8)e: (8 (x,5)) + ¥(x) (19)
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where ¥(x) is arbitrary constant of integration in y. ®(y,s) has the form
, R
D(y,s) = [2'(3,5), P(1,5),..., P°(n,5)], P(v,5) = (P, P4, 4), j=12,....6 (20)

and is the periodic solution of the following microscopic homogenization problem
s/ e (3u(y))[G’ — Ge,(¥/(y,5))]dy =0, VYoueVy, j=12,...,6 (21)
Y

In the above equation, G’ is the jth column vector of the Laplace transformation of the relaxation modulus
matrix.

G’ = (Gij, Gy, Ge)" (22)
Substituting Eq. (19) into Eq. (17) and choosing du = du(x) yields

/ssf(Su)(}st(ﬁo)dx—/Squde—/ Su'pdl =0, Voue Vg (23)
Q zZ 00

where 7 = 7 [, fdy and

G (s) = ﬁ / (G — Ge, (0(y,5))]dy (24)

&(P(y,5)) = [,(D'(3,5)), &,(P*(1,5)). - .- &(P*(1.9))] (25)

Eq. (23) is very similar to the governing Eq. (7) of virtual work principle. G is the effective relaxation
modulus matrix in the Laplace transformed domain. After obtaining G” from Eq. (24), the effective
relaxation modulus G” of the layered material in the time domain can be determined by the inverse Laplace
transformation.

Eq. (21) is called a microscopic homogenization problem. In general cases, it is solved by a numerical
method, such as the finite element method. For layered material investigated in this paper, it will be solved
analytically.

3. Solution of microscopic homogenization problem

Assume that the material of every layer is orthotropic and the plane parallel to the layer is a material
symmetric plane. In this case, the relaxation modulus of every layer has the following form:

Gu Gn Gz 0 0 0

G, Gn Gu O 0 0

Gz Gyx Gz 0 0 0
0 0 0 Gu O 0
0 0 0 0 Gss O
0 0 0 0 0 G

G— (26)

Substituting Eq. (26) into Eq. (21) and considering the fact that Eq. (21) is defined in one-dimensional
region, we have

/Y (7 (5u) (G — Ge, (@) dy = 0 (27)
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Introducing Eq. (3b) into Eq. (27) and expanding this equation yields

~ ~ 6<153j 651/{3 o .
/Y <G3j—G33 ay > ay dy—O, J= 1,2,...76 (283)
~ ~ a@Zi 65M2 o .
/Y <G4j— G44 ay ) ay d 0 J= 1,2,...,6 (28b)
~ ~ 6451) 6614] .
Gs; — Gss— dy=0, j=1,2,...,6 28¢
/Y ( 5) 55 3y dy Y J (28¢)

Integrating Eq. (28) by parts yields

0y Gy Gy

== = j=12,...,6 (29a)
b Gy Gy
oD, G
L9y _Gi=Cy iy n 6 (29b)
oy Gss
0D, — Gy
L0y GGy 6 (29¢)
y Gus
where Cy;, Cy; and C5; (j =1,2,...,6) are real constants.
The periodicity condition requires that the following equations should be satisfied
P
/a Ydy=0, j=12,...,6 (30a)
7]
6(151] )
j=12,....6 (30b)
ml
1 0, )
— =0, j=1,2,...,6 30c
71 )y o (30
From the above equations, the non-zero components of the real constants C;, C; and Cs; (j =1,2,...,6)
can be obtained by
1 1 M(Gy;/G
Com Cym oy MGG gy (31)

M(1/Gss) ' M(1/Ga)’ M(1/G3)

Substituting Egs. (29) and (31) into Eq. (24), the Laplace transformed effective relaxation moduli can be
expressed explicitly as

G = 1/M(1/Gs) (32a)
G = M(Gy)) — M(G%/Gs3) + GEEM?(G 13/ G3) (32b)
G = M(Gr) — M(G3/ Gx) + GHM* (G / Gs) (32c)

51112 = M(Go) — M(GnGi3/Gxs) + é%M(an/én)M(é%z/a%z) (32d)
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Glh = Gi3M (G /Gx) (32)
Gl = GYM (G Gs) (32f)
G = 1/M(1/Gus) (32g)
G =1/M(1/Gss) (32h)
Gl = M(Ges) (32i)

where the volume average operator is defined as

e = [0a =5 [0 (33)

4. Inverse Laplace transformation of relaxation modulus

In this section, two typical kinds of viscoelastic constitutive models will be considered in order to
illustrate the procedure of the method.

4.1. Model T
Assume that the viscoelastic properties of every layer satisfy the following three-parameter model

Gy(t) = E()Gy; = (g0 + g )Gy (34)

where Gj;, qo, g and p are constant parameters. The material constants of two different layers are expressed
as

E(f)=Et) =g\ +q'e?, G,= 6}.}. (35a)
E(t) = E"t) = g + ¢"¢ ", G, =G (35b)

In the above equations and the next sections, the superscripts I and II denote different layers I and II. The
Laplace transformed relaxation modulus of two different layers are expressed as

1 1 1 1 1.1

=~ Fl = +q)s+p gy

) =BG = (D, 1 g _ 0G 36

x;(s) (S) ij P +S +p1 ij S(S +p1) ij ( a)

11 11 11 11 11 11

Sy oAt (q0 40\ (g0 +4)s+plgy =n

1) =BGl = (e L5 g < W L (36b)

Introducing éll.j(s) and (N?ll.}(s) into Eq. (32) and doing inverse transformation, we have
Gl = Rev(1/M(1/Gx)) (37a)
5 _
G, = M(G) — M(EG,,/Gx3) + G5sM?(G13/Gs3) (37b)

[ R — — —
G, = M(Gyn) — M(EG,;/Gy3) + GEM* (G /Gss) (37¢)
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Gy = M(G12) — M(EGxG13/Gs3) + M(Gi3/Gy3 )M (G )/ Gs3) G,y (37d)
Gy = M(G31/G)GY, (37¢)
Gy, = M(G»/Gy)GY, (37f)
Gy = Rev(1/M(1/Gy)) (372)
G = Rev(1/M(1/Gss)) (37h)
Ggs = M (Gis) (371)

where Rev( ) denotes inverse Laplace transformation. In the above equations, all the elements of the
relaxation modulus except G5, G¥, and G% are given explicitly in terms of the properties of the layers. Next,
we shall determine them by the inverse Lalace transformation of (1/M(1/Gy), i = 3,4,5.

In this paper, we will use the Cauchy residue theorem based method to determine the inverse Laplace
transformation. The inverse transform of a general function f(s) is defined by the complex integral formula
(Debnath, 1995)

1 ct+ico

f(6) = Rev(f(s)) = 5— (s)e"ds (38)

2mi c—ioo

where c is a suitable real constant and f (s) is an analytic function of the complex variable s in the right half-
plane Res > ¢. Suppose that f(s) is a single valued function with a finite or enumerably infinite number of
polar singularities and that all the singularities lie in the left half-plane Re s <c¢. Then, Cauchy residue
theorem (Debnath, 1995) yields

7(t) = Rev(f(s)) = sum of the residues of f(s) " at the poles of £ (s) (39)

Considering the definition of the volume average operator M (x) given by Eq. (33), 1/M(1/G;), (i = 3,4,5),
can be expressed as

1 a Pi(s)
VUG g sis—si)(s — o)

1/M(1/Gy) = . i=3,4,5 (40)

where V! and V" are the volume fractions of MAT-I layer and MAT-II layer, respectively, P;i(s) is a
polynomial of state variable s and is defined by the following equations

Pils) = GGy (A's + plah)(4"s + pq}) (41)
A] _ q(l) _’_qI, AH — qg)l +qll (42)
and s and s¥ are the poles of 1/M(1/Gy).
. —b+Vb*—dac , —b—b —dac
L 43)

a=AVG, + AVG
b= (g} + P 4"V'G, + (g + p"4) V"G, (44)
c = pIpII ( q(I)I VI@;I + q(I) VII@fi)
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According to Eq. (39), inverse Laplace transformation of (40) is expressed as

Rev(M(l/@)) B Ii%s(s(s—sav(s—sz) ) +Res <s<s_s ST )

+ Res (ﬁe“) (45)

s=s} S'll) (S

where, Res,_, (f(s)) denotes the residue of f(s) in s;. Thus, the relaxation modulus G/ can be expressed in
the following analytical formula

[p qp'qy (s +p'q) (A1 +p"90) 0, (Al +Plgo) (%52 + P ay) W}
$182 §1 (Sl - Sz) (Sz - Sl)Sz

i=345 (46)

G =G.G,

ii 12

From Eq. (37) and Eq. (46), the relaxation muduli can be computed analytically.
4.2. Model 11

In the second model, every individual layer is assumed to be isotropic and its bulk deformation elastic,
and the shear deformation satisfies the three-parameter solid model. The constitutive equation of the layers
is expressed as

o= [ ou- 52 g; )

Non-zero elements of the relaxation modulus matrix are

2 1
G11=G22:G33=K+§Y7 Gu=Gss =Ggs =7, G12:G13=G23=K—§Y (48)

where K is the bulk elastic modulus and is not related to time, ¥ (¢) is the shear relaxation modulus and is
expressed as
G? G? G

Y(t) = - —2G, — —1 - S
() =qo+g9e™, qo | 1T eGP

49
G1 + G2 ( )

where G| and G, are shear rigidity moduli, and #, is viscous coefficient. In this case, the Laplace trans-
formation of the effective relaxation modulus can be determined by Eq. (32). Considering the isotropic
feature of the layers, and applying the inverse Laplace transformation to Eq. (32), the macroscopic effective
relaxation modulus is expressed as

G = Rev(1/M(1/G33)) (50a)
G = Gl = M(G1) — M(Rev(G2,/(G2,/G3))) + Rev <M(G13/58%(C§”/G”) ) (50b)
G = M(Gra) — M(Rev(G2,/Gs)) + Rev (M (G”/Ajg%(j“/ G) ) (50¢)

Gl — i — R «‘M) (50d)
M(1/G33)
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Gy = G55 = Rev(1/M(1/Gus)) (50e)
Gl = M(Ges) (50f)

The inverse Laplace transformations listed in the above equations will be determined in the following
sections.

4.2.1. G% and GY,
Firstly, we will derive the formulae to determine G%, and G¥,. Using the method for deriving Eq. (40), we
can obtain

UM(1/Gr) = P (s1)
Y TVGL /G 3 G - )
~ 1 PH¥(s)
1/M(1/Gy) = —— = 52
MG = v /G, 3as(s — )5 — ) -
where

a” = V'(3K" 4+ 2g¢ +24") + V" (3K" + 24 + 24") (53a)
P¥(s) = [(3K" +2q0) (s + ') +24's] - [(3K™ + 247 (s + p") + 24"s] (53b)
a* = V(g + ") + V(g + qb) (54a)
P2(s) = [(¢' +ap)s + qop'] (6" + ap)s + a0 P"] (54b)

where s3° and s3° are the roots of the equation below
V(s +p)IsBK" +2g5 +24") + (3K" + 249)p"]
+ V(s + pMs(3K" + 2¢5 + 2¢") + 3K + 2¢5)p'] =0 (55)

and s* and s3* are the roots of the below equation

Vi(s +P)1(g" +a0)s +aop"| + V(s +p")L(g" + q0)s + qop'] =0 (56)
Using the method expressed by Eq. (39), it will be derived that
P30 P33 (3 A P33 (3 '
Gy = (%3 )33 + 33 (531 ) 3 et + 3 & )33 3 e (57)
T 3aBsPsy  3a¥3sP (s —83) 3a%(s3° — 57°)s35°
G PO P e PR 58
atsHs T gl (H g a (T — P

4.2.2. Inverse Laplace transformation of 653 / Gs;
From Egs. (48) and (49), we have

G2/ G = (K —qo)(s+p)—gs)” 1 (59)

33K + 20 + 29) (s + M) (s+p)s

3K+2q0+2q
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By use of Eq. (39), we have

(3K — q0)(s1 +p) — gs1)° . 1 o (3K —qo)’

3685

Rev(G2,/Gy3) = €
(G13/G3) 3(3K + 2q0 + 29) (s1 + p)s1 3(3K + 2q0)
2
a’p -
— e 60
3K + 200+ 2001~ p) (©0)
where
(3K + 2q0)p
_ 61
4.2.3. Inverse Laplace transformation ofM((~;13/633)/M(1/@33)
Defining
0%(s) = V'(3K" — g5 — ¢")s + (3K" — qo)p' | L (3K™ + 24 +2¢™)s + (3K™ + 24 )p"]
+ VMGK" — g5 —¢")s + BK™ — g )p"[3K" + 2q5 + 24")s + (3K" + 245)p'] (62)
then
M(Gi3/Gss) = Q% (s) /P (s) (63)
and
M(Gis/Gxn) _O%(s) 1 _ 0"(s) (64)
M(1/Gs3) Ps(s) M(1/Gy)  3a¥3s(s —s7)(s — 53°)
Based on Eq. (39), it is derived that
oy M(G13/Gy) __0%(0) 0" (sp) o 4 0"(s3) 53 (65)
M(1/633) 3aPsPs3 0 3aPsP (s — 53°) 3aPs33(s3° — 5]
4.2.4. Inverse Laplace transformation ofM(613/(~;33)M(6’23/633)/M(1/(~}33)
From Eq. (63), we have
M(Gi3/G33)M(Ga/Gx) _ (08 (s))
M(1/Gs) 3as(s — s33) (s — s3°) P (s)
_ (SOl (66)
356 -6 )6~ 6 5
where s3° and 53’ are the zero point of P (s).
Table 1
Material constants of two different layers
E (MPa) v n (pad) K (MPa) q0 (MPa) q1 (MPa) p (1/day)
Mat-1I 9.8x10% 0.24 9.8x10" 628.2 9.67x10% 3.22x108 0.00658
Mat-I1 1.96x 108 0.2 9.8x10" 108.9 6.1x107 1.84x108 0.00125
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By using the residue theorem based method expressed by Eq. (39), the following formula is derived

Rev M(613/633)A{(623/633) _ [QB(O)]Z [Q13(5?3)]2 et
M(1/G) N B GGG
076
3T )T - )
02 ()P
D e (R [
076 ©7)

3aPs3? (53 — 51°) (53" — 537) (537 — 53%)

2.4E+09

2.3E+09 |

2.2E+09 |

= 2.1E+09 |

G"y; (pa)

2.0E+09 |

1.9E+09

1.8E+09 : : : : :
0 10 20 30 40 50 60

Time (10 days)

Fig. 2. Effective relaxation modulus G (G% = G%)) in time domain (the volume fraction of Mat-II is 10%).

2.84E+08

2.64E+08

2.44E+08
— GH12

=== GH13
2.24E+08

G"(pa)

2.04E+08 .

1.84E+08 | i

1.64E+08 | ,

1.445+oso L L . . ’
Time (10 days)

Fig. 3. Effective relaxation modulus G%, and G, in time domain (the volume fraction of Mat-1I is 10%).
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After obtaining these inverse Laplace transformations, we can get every element of the relaxation modulus
matrix of the layered material by substituting Eqgs. (57), (58), (59), (61), (65) and (67) into Eq. (50).

5. Numerical example

Suppose that the microstructure of the layered material consists of two isotropic layers, and that the bulk
deformation of every individual layer is elastic and the shear deformation satisfies the three-parameter solid
model. The material constants of both layers are shown in Table 1. Based on the analytical expressions
derived in this paper, the relaxation moduli of the layered materials are computed. Figs. 2-4 show the
effective relaxation modulus in the time domain, when the volume fraction of MAT-II is 10%. Fig. 5 shows
the variations of the effective relaxation modulus with the volume fraction of the layers.
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Fig. 4. Effective relaxation modulus G5, G%,, G& in time domain (the volume fraction of Mat-II is 10%).
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Fig. 5. Effective relaxation modulus vs. volume fraction of Mat-1I (at the time of one day).
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6. Conclusions

Based on the homogenization theory and Laplace transformation, analytical expressions for predicting
the viscoelastic property of layered materials have been derived. The expressions make it easy to determine
the overall viscoelastic property of layered materials and can be used in engineering design.
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